環(huán)境相關(guān)材料
唐鈺棟, 程之強, 薛友祥, 等. 高溫氣體凈化用陶瓷纖維過(guò)濾材料的制備及性能. 現代技術(shù)陶瓷,2020, 41: 303-311.
Tang YD, Cheng ZQ, Xue YX, et al. Preparation and performance of ceramic fiber filtration material for high temperature gas purification. Advcanced Ceramics, 2020, 41: 303-311.
唐鈺棟, 薛友祥, 程之強, 等. 高溫陶瓷纖維膜材料的制備及影響因素分析. 現代技術(shù)陶瓷,2020, 41: 294-302.
Tang YD, Xue YX, Cheng ZQ, et al. Preparation and influence factor analysis of high temperature ceramic fiber membrane materials. Advcanced Ceramics, 2020, 41: 294-302.
薛友祥, 李福功, 唐鈺棟, 等. 高溫陶瓷纖維過(guò)濾材料. 現代技術(shù)陶瓷,2020, 41: 281-293.
Xue YX, Li FG, Tang YD, et al. Development of high temperature ceramic fiber
filtration materials. Advcanced Ceramics, 2020, 41: 281-293.
薛友祥, 唐鈺棟, 李福功, 等. 除塵脫硝一體化高溫陶瓷過(guò)濾材料研究進(jìn)展. 現代技術(shù)陶瓷,2020, 41: 269-280.
Xue YX, Tang YD, Li FG, et al. Research progress of high-temperature ceramic filter materials for integrated dedusting and denitration. Advcanced Ceramics, 2020, 41: 269-280.
王俊偉, 徐鑫. 膜蒸餾用多孔陶瓷膜的疏水改性. 現代技術(shù)陶瓷,2020, 41: 171-185.
Wang JW, Xu X. Hydrophobicity modification of the ceramic membranes
for membrane distillation. Advcanced Ceramics, 2020, 41: 171-185.
薛友祥, 王響, 張久美, 等. 連續纖維增強陶瓷纖維過(guò)濾材料制備工藝研究. 現代技術(shù)陶瓷,2019, 40: 432-440.
Xue YX, Wang X, Zhang JM, et al. Preparation of continuous fiber reinforced ceramic fiber filtration material. Advcanced Ceramics, 2019, 40: 432-440.
王興福, 毛巍威, 張健, 等. 鐵酸鉍復合材料的制備及其可見(jiàn)光催化性能研究進(jìn)展. 現代技術(shù)陶瓷,2019, 40: 417-431.
Wang XF, Mao WW, Zhang J, et al. Progress on the preparation of bismuth ferrites composites and their photocatalytic property under visible light. Advcanced Ceramics, 2019, 40: 417-431.
汪洋, 周媛媛, 李魁, 等. MgO燒結助劑對CaZr4(PO4)6陶瓷力學(xué)性能及熱膨脹系數的影響. 現代技術(shù)陶瓷,2019, 40: 354-359.
Wang T, Zhou YY, Li K, et al. The effects of MgO addition on mechanical properties and thermal expansion coefficient of CaZr4(PO4)6 ceramics. Advcanced Ceramics, 2019, 40: 354-359.
王響, 薛友祥, 程之強, 等. 除塵脫硝一體化陶瓷膜材料的研究. 現代技術(shù)陶瓷,2019, 40: 345-353.
Wang X, Xue YX, Cheng ZQ, et al. On the ceramic membrane material for SCR and dust removal. Advcanced Ceramics, 2019, 40: 345-353.
苗蕾, 鄧梓陽(yáng), 周建華, 等. 新型太陽(yáng)能蒸汽系統及光熱材料研究進(jìn)展. 現代技術(shù)陶瓷,2019, 40: 235-255.
Miao L, Deng ZY, Zhou JH, et al. Research progress of emerging solar-driven steam generation system and photothermal materials. Advcanced Ceramics, 2019, 40: 235-255.
唐鈺棟, 薛友祥, 趙世凱, 等. 水處理用陶瓷平板膜制備. 現代技術(shù)陶瓷,2018, 39: 362-368.
Tang YD, Xue YX, Zhao SK, et al. Preparation of ceramic flat membrane for water treatment. Advcanced Ceramics, 2018, 39: 362-368.
汪長(cháng)安, 張健, 龔銘, 等. 過(guò)渡金屬氧化物空心球的制備及催化性能研究進(jìn)展. 現代技術(shù)陶瓷,2018, 39: 95-105.
Wang CA, Zhang J, Gong M, et al. Research progress on preparation and catalytic performance of transition metal oxide hollow spheres. Advcanced Ceramics, 2018, 39: 95-105.
魏媛, 張紅松. ALaNbO7 (A = Dy, Y) 材料制備及光催化活性. 現代技術(shù)陶瓷,2018, 39: 51-55.
Wei Y, Zhang HS. Preparation and photocatalytical activity of ALaNbO7 (A = Dy, Y) materials. Advcanced Ceramics, 2018, 39: 51-55.
艾建平, 林初誠, 廖偉秀, 等. Ag/AgCl/ZnO納米復合材料的制備及其光催化性能. 現代技術(shù)陶瓷,2018, 39: 40-50.
Ai JP, Lin CB, Liao WX, et al. Synthesis and photocatalytic activity of Ag/AgCl/ZnO nano-composites. Advcanced Ceramics, 2018, 39: 40-50.
王體玨, 張錦化, 楊偉峰, 等. 菱鎂礦粒度對堇青石陶瓷燒結性能的影響. 現代技術(shù)陶瓷,2017, 38: 440-446.
Wang TJ, Zhang JH, Yang WF, et al. Influence of particle size of magnesite on the sintering properties of cordierite ceramics. Advcanced Ceramics, 2017, 38: 440-446.
寧偉偉, 陳超, 張青紅, 等. TiO2/SiO2復合納米纖維的GQDs改性及其對甲醛的可見(jiàn)光催化降解性能. 現代技術(shù)陶瓷,2017, 38: 217-224.
Ning WW, Chen C, Zhang QH, et al. GQDs modified TiO2/SiO2 composite nanofibers and its photocatalytic activity for degradation of formaldehyde. Advcanced Ceramics, 2017, 38: 217-224.
唐青, 崔學(xué)民, 賀艷, 等. 地質(zhì)聚合物及其在重金屬廢水處理中的應用. 現代技術(shù)陶瓷,2016, 37: 253-268.
Tang Q, Cui XM, He Y, et al. Geopolymer: research progress and its applications in removing heavy metal from water. Advcanced Ceramics, 2016, 37: 253-269.
張建峰, 涂溶, 後藤 孝. 旋轉CVD技術(shù)及其在陶瓷粉體擔載納米粒子催化劑制備中的應用. 現代技術(shù)陶瓷,2016, 37: 179-189.
Zhang JF, Tu R, Goto T. Advances in rotary chemical vapor deposition and its applications in fabrication of ceramic-supported nanoparticle catalysts. Advcanced Ceramics, 2016, 37: 179-189.